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Abstract. One of the biggest obstacles in the formalisation of the Java
bytecode is that the language consists of around 200 instructions. How-
ever, a rigorous handling of metatheoretic properties of a programming
language requires a formalism which is compact in size. Therefore, the
actual Java bytecode instruction set is never used in the context. In-
stead, the existing formalisations usually cover a ‘representative’ set of
instructions. This paper describes a design of formalisation that provides
a concise set of abstract, generic instructions that can be specialised to
obtain any particular bytecode instruction. In this way one can work with
a manageable set of instructions to prove general facts about the Java
bytecode, but at the same time all the bytecode instructions are available
to enable direct verification of actual bytecode programs. A considerable
part of the design has been realised in Coq.

1 Introduction

There are many tools to manipulate programs depending on their semantic prop-
erties (e.g. program translators, code refactoring tools, code optimisers) but their
trustworthiness is usually based on producer’s reputation. In order to guaran-
tee correctness of such a tool one needs a formalisation of the semantics of the
programming language the tool works with.

In this paper we provide a detailed and in a considerable part realised design
of a formalisation of the Java Virtual Machine language (JVML) semantics. The
key motivation for this project, called CoJaq1, is to create a platform where the
following two activities can be carried out. On the one hand, real programs can
be translated to it and then their properties can be unequivocally expressed and
proved. On the other hand, metatheoretical properties of the language can be
expressed and proved. This approach has the advantage that the metatheoretical
properties are proved for exactly the same language in which the actual programs
are verified. In this way, the need for modelling of the language features, that
may lead to inaccuracies or may be impaired by inadequate treatment of the
subject issue, is eliminated.

? This work was partly supported by Polish government grant N N206 493138.
1 Available at http://cojaq.mimuw.edu.pl
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Formalisation of a real-world programming language is rarely taken up as this
is a difficult task. In particular (a) the informal language descriptions span over
hundreds of pages and it is easy to omit some subtle details that are surrounded
with considerable amount of pragmatic details that have little to do with the
actual semantic behaviour; (b) important semantic properties of the language are
sometimes expressed implicitly and should be inferred from pieces of information
spread over many pages; (c) the descriptions in natural language are not formal
and therefore often ambiguous; (d) formalisation of such large entities easily goes
beyond human comprehension so a non-trivial structuralisation effort is needed
to achieve the final result; and (e) in case interactive theorem provers are used
as support, their limitations can be reached. In fact, such a formalisation effort
can be viewed as an implementation of an interpreter for the subject language
in the target language of the formalisation, being either set theory, arithmetic
or HOL, Coq etc. logic. As a result formalisations require significant effort very
similar to the effort of programmers.

Practical languages embody many features resulting from the need for flex-
ibility in program development. Therefore, many their constructs are reducible
to a small sublanguage through a translation. Then the restricted subset can be
given a fully formal description. This methodology was followed in specifications
e.g. for SML [16] and JML [22,13]. In our work we take a different approach. It
is hardly possible to find a strong sublanguage of the JVML that can express all
the necessary features. Still, the complexity of the language is high. Therefore,
we defined abstractions of the bytecode instructions following the design in [4]
and then formalised the abstractions in Coq [6]. These abstractions are hierar-
chical and their lower levels correspond more closely to the actual instructions
so that the lowest levels fit the real bytecode mnemonics in a very direct way.

In case abstraction is done for a particular phenomenon it is important to un-
derstand the principle that rules the effort. In our attempt we focused attention
on runtime structures of Java Virtual Machine (JVM). The runtime structures
govern the computation that is carried out by the machine and they include,
among others, the heap, the set of threads and for each of them the method
frame stack, the currently executed method, the program pointer in the method
code etc. Different bytecode instructions operate on the runtime structures in
a different way. Still, most instructions manipulate only some of the structures
(e.g. the integer addition instruction manipulates only the local operand stack)
and many work according to the same scheme (e.g. all conditional instructions
test the top of the operand stack and change the program pointer according to
the value). This approach makes it possible to discharge easily parts of proofs for
metatheoretical properties that do not involve some of the runtime structures.

The key achievements of the presented formalisation are:

– The Java bytecotde instruction set has been modelled in Coq. The formal-
isation groups the instructions according to their handling of the JVML
runtime structures. This creates a platform that can be used at the same
time to verify programs and to make feasible metatheoretical proofs for the
language.
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– The semantics is extensive and detailed — although it is not complete, it cov-
ers a significant number of instructions and contains simplified formalisation
for all aspects of the JVML in such a way that it can be extended to cover
full functionality in future versions.

– A static semantic based upon types of values is developed for the instructions
that use only frame runtime structures (i.e. structures such as operand stack
and local variables table, but not heap). This static semantics is proved to
be sound and complete with regard to the dynamic one.

– A general theorem that programs for which Hoare-style logic rules apply at
each step are partially correct is proved for the above mentioned subset.

The paper is structured as follows. Section 2 describes the key design fea-
tures of our formalisation. Section 3 presents the limitations of the currently
existing formalisation. In Section 4 we report the related work and we conclude
in Section 5.

2 Key Ideas

A formalisation of an industry standard specification for a programming lan-
guage is a resource intensive task so it should be done with a particular set of
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Fig. 1. Module dependencies in CoJaq.
Rounded rectangles represent modules and
solid arrows the relation depends on.

requirements in mind. Here is a
summary of the requirements we
worked with during the formalisa-
tion of CoJaq and their impact on
the design.

Multiple specification interpreta-
tions The formalisation should
take into account the possibility to
interpret the original specification
in different yet plausible ways. The
actual implementations of the stan-
dard may differ in their operation
since they have taken a different
approach on the implementation of
a particular notion described in the
specification (e.g. they use a differ-
ent scheduler which has the impact
on the way programs are executed).
The formalisation we want to ob-
tain should be such that it is possi-
ble to prove correct statements that
describe the operation of all plau-
sible implementations.

To obtain this we use three main techniques. First, the whole semantics
is written in the small-step fashion. The small-step fashion is more appropriate
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since the natural language semantics is also formulated in the small-step fashion.
Moreover, the formulation of many metatheoretic properties (e.g. immutability,
purity etc.) is easier in this style. Second, the semantics is formalised as a relation.
In this way the semantics we propose can be non-deterministic in places where
the description is, while this would be impossible in case the formulation in the
form of function was chosen. Third, we use extensively the module system of
Coq to separate different aspects of the virtual machine (see Fig. 1).

Manageable set of instructions In case a metatheoretical property should be
proved for a system like this, one needs to make many proofs by induction over
the structure of the language. When the language is big one must consider an
excessive number of cases to obtain even a very simple property. This difficulty
can be avoided when similar instructions are grouped together and managed in
a hierarchical structure. With such a layout many cases can be discharged on
higher levels of the hierarchy resulting in smaller proofs. We took this approach
in our formalisation and present it in more detail below.

Static semantics The correct operation of the semantics in the JVML strongly
relies on the assumption that bytecode instructions have arguments of appro-
priate types. Therefore, the operation of each instruction is accompanied by a
careful description of the types for its input and results. In our formalisation we
separated the description of the types from the description of the actual opera-
tion of the instructions and provide two different relations for the two aspects.
We believe that many proofs can be simplified due to the choice since they will
not have to manage the typing information.

A logic for verification Since the formalisation should serve as a basis for veri-
fication of real programs we need a logic of programs to enable this. Therefore,
a part of the formalisation must be such a logic.

2.1 Hierarchy of Instructions

Although the number of bytecode instructions is very large, one can see that
many instructions are similar to one another. We can distinguish the following
simple situations contributing to the proliferation of instructions.

1. A set of instructions performing the same operation for different data types.
This is the case of iload, fload, aload, and so on. Each instruction loads a
local variable value and pushes it on the operand stack, but a single instruc-
tion is applicable only to a particular type of values (int, float, and ref,
respectively).

2. “Shorthand instructions” are defined for some most widely used argument
values, as predicted by the JVML designers. An example could be the set of
instructions iload_0, iload_1, iload_2, iload_3.

3. Instructions related to arithmetic and comparison often behave in similar
way and differ only in an arithmetic operator. For example, iadd, isub,
imul, and idiv all perform binary arithmetic operations on integers. They
all pop two operands from the stack and push back one resulting value.
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Each of the aforementioned cases can be simply “compressed” back to a single
parametrised instruction. The examples mentioned in cases 1 and 2 can be cov-
ered by an abstract load instruction parametrised by a data kind (e.g. int) and
a variable number. This one abstract instruction covers 25 JVML instructions.
The case 3 can be factorised into an abstract instruction, parametrised by a data
kind and a function on that kind, i.e. an abstract binop instruction with param-
eters such as addition, subtraction etc. This factorisation idea was used e.g. in
Bicolano [18], where the number of instructions was reduced by almost 40%.

In [4] we decided to go one step further and factorise instructions according
to runtime structures they operate on. We divided the JVML instructions into
twelve parametrised abstract instructions. In the current paper, we refine this
approach by organising the instructions into a hierarchy that is also followed by
the definition of operational semantics. The hierarchy is presented in Fig. 2. It
is represented in Coq as a number of (non-recursive) inductive types. The top-
most one is TInstruction with 6 constructors: I_Throw, I_Monitor, I_Invoke,
I_Return, I_Heap, and I_Frame. The first four represent instructions with spe-
cific access to JVM data. The fourth one, I_Heap, represents instructions which
operate on the object heap without modifying the call stack (all variants of get,
put, new and array access). The fifth one, I_Frame, represents the largest family
of instructions which operate on the data in the method frame located at the
top of the method call stack of a thread. Let us present the latter category in
detail.

The constructor I_Frame takes one argument, which is an element of type
TFrameInstr with 5 constructors: FI_Load, FI_Store, FI_Inc, FI_Stackop, and
FI_Cond. The first one represents instructions which read the local variable table
and write values to the operand stack. The second represents instructions which
pop values from the operand stack and write the local variables array. The third
one represents the only JVM instruction iinc which reads and writes only the
variable table. The fourth one, FI_Stackop, represents the instructions which
modify the operand stack, including all arithmetical operations. The fifth one,
FI_Cond, represents the instructions which use the operand stack and possibly
change the program counter in a different way than just moving to the next
instruction. This constructor, again, takes an argument which is an inductive
type representing one of the different ways a branching instruction works: un-
conditional jump, comparison of one element from the stack with 0, comparison
of two elements from the stack, etc.

For example, the JVML instruction if_icmpgt 26 is represented by

I_Frame (FI_Cond (CI_Cmp KInt CmpOp_gt offset26))

where offset26 is the index of the instruction pointed by the address 26 above.

2.2 Hierarchical Definition of Semantic

Our formalisation of operational semantics follows the hierarchy of instructions.
It can be seen already in a “big picture” view of Coq modules, Fig. 1, where
the structure of modules implementing semantics (those with the Sem prefix)
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Fig. 2. Hierarchy of instruction abstractions

resembles the hierarchy of instruction representation. The semantic hierarchy is
designed in such a way that the relations defining semantics of abstract instruc-
tions which are lower in the instruction hierarchy operate on a smaller fragment
on the JVM state — exactly the one which is accessed by the real instructions
represented by the abstract one. Due to this choice, one can handle a whole big
instruction set when the property to be proved is not dependent on the details
of the operation on the structures involved.

Let us present and explain the hierarchy of semantic relations on the example
of if_icmpgt 26 instruction, whose CoJaq representation is given above.

The small-step semantic relation is implemented in the module Semantics
as a Coq inductive relation step of type TProgram → TJVM → TJVM → Prop.
The relation states whether for a given program and virtual machine state a
transition to another state is possible. One of its cases covers the instructions
from the I_Frame family:

Inductive step (p: TProgram): TJVM → TJVM → Prop:=
| Step_frame: forall mn code finstr jvm1 th1 fr1 jvm2 th2 fr2,
selected_thread jvm1 th1 →
one_thread_changed th1 th2 jvm1 jvm2 →
top_frame_changed (mn, fr1) (mn, fr2) th1 th2 →
getMethodBodyFromProgram p mn = Some code →
getInstruction code (frameGetPC fr1) = Some (I_Frame finstr) →
M_Sem_Frame.semFrame code finstr fr1 fr2 →
step p jvm1 jvm2

| ...

Let us describe briefly the preconditions which are expressed with help of a
number of auxiliary relations:
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selected_thread jvm1 th1— means that th1 is the thread selected by the
scheduler in the JVM state jvm1;

one_thread_changed th1 th2 jvm1 jvm2— the JVM state jvm2 is jvm1 with
its thread th1 replaced by th2;

top_frame_changed (mn, fr1) (mn, fr2) th1 th2— the thread th2 is th1
with its topmost frame on the call stack (mn, fr1) changed to (mn, fr2),
i.e. the topmost method name (signature) mn did not change but the frame
data fr1 was replaced by fr2;

getMethodBodyFromProgram p mn = Some code— the method mn is defined in
the program p (in particular m is not abstract) and its code is code;

getInstruction code (frameGetPC fr1) = Some (I_Frame finstr)— the cur-
rent instruction of the current frame is of type I_Frame;

M_Sem_Frame.semFrame code finstr fr1 fr2— the specialised semantic re-
lation of the frame instruction holds between the “old” frame fr1 and the
new one fr2. This relation is described below.

The relation semFrame specifies the semantics of I_Frame instructions. It has
type TFrameInstr → TFrame → TFrame → Prop which means that, given de-
tails of an I_Frame instruction it is a relation on frame data and not on full
JVM states. It is again an inductive relation with branches determined by the
(sub)type of a given frame instruction.

Since our example instruction is a conditional jump instruction FI_Cond the
suitable branch StepFrame_cond applies:

Inductive semFrame (code: TCode): TFrameInstr → TFrame → TFrame → Prop:=
| StepFrame_cond: forall op pc1 vars sk1 lv1 pc2 sk2 lv2 off_op,
M_Sem_Cond.semCond op lv1 lv2 off_op →
stackTopValues lv1 lv2 sk1 sk2 →
pc2 = calculate_pc off_op code pc1 →
semFrame code (FI_Cond op) (mkFrame vars sk1 pc1) (mkFrame vars sk2 pc2)
| ...

Note that the number of premises here is much smaller than in the definition
of the general step relation. Actually, there is only one structural premise,
stackTopValues lv1 lv2 sk1 sk2, which says that the operand stack sk2 is
sk1 with its topmost values lv1 replaced by lv2. Apart from this,
M_Sem_Cond.semCond op lv1 lv2 off_op says that the lower level semantics
for FI_Cond instructions permit the transformation of values at the top of the
stack from lv1 to lv2 and optionally generates a jump to off_op. Lastly, the
equation for pc2 calculates the proper next instruction according to off_op and
the current position. The final line of the above semFrame branch shows that
evaluation of the FI_Cond instruction does not change local variables.

The precise semantics of the FI_Cond abstract instruction does not inter-
act with the whole frame, but only with the parts it really needs, i.e. the top
values from the stack. And the actual effect of the instruction on the values
taken from the operand stack is implemented in the semCond relation of type
TCondInstr → list TValue → list TValue → option TOffset → Prop, which
given conditional instruction details should be understood as a partial function
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from a list of values (popped from the operand stack) to the list of values (to be
pushed back on the operand stack) and optional jump address. It is realised as
an inductive relation with branches determined by the conditional instruction
details TCondInstr. Of course the concrete comparison of integers is done in the
proper arithmetic module.2

The hierarchical structure of semantics has at least three advantages. First
of all, it prevents code duplication, as otherwise the step relation e.g. for all
the I_Frame instructions would have almost identical premises corresponding
to extracting the suitable fragment of the JVM state. Second, when proving
some properties of the semantics, the necessarily large proof is also hierarchically
organised into lemmas and therefore easier to manage than a big monolithic one.
Moreover, if the property at hand is not relevant for a large part of instructions,
chances are that many of the irrelevant instructions will be discharged at a high
level of semantic hierarchy, e.g. one would discharge the whole I_Frame branch
of the step relation and not many separate instructions one by one. The third
advantage is the possibility to develop some proof techniques like VCGen, Hoare
logic etc. only for fragments of the semantics, if the whole semantics it too
complex to cover. The hierarchical structure of the semantics provides again, a
natural delineation of fragments to do and to ignore.

2.3 Static Semantics

The dynamic semantics defines the actual behaviour of bytecode programs. Still,
a program can run correctly, according to the JVM specification, only provided
that it is type correct. Therefore, one needs a description of how execution of
instructions modifies the types of the elements stored in the program runtime
structures. This is a basic step to prove correctness of the JVML verification pro-
cedure. In our formalisation we accompany definitions of the dynamic steps with
static ones. In particular, the conditional instruction operation defined through

semCond: TCondInstr → list TValue → list TValue → option TOffset → Prop

is accompanied by the relation

staticSemCond: TCondInstr → list TKind → list TKind → option TOffset → Prop

which says that the operation in question given an operand stack with top el-
ements of types enumerated in the first list (list TKind) returns a stack with
the top elements replaced with values of types enumerated in the second list
(list TKind) and optionally moves the program counter given number of steps
(option TOffset).

A crucial property of such a static semantics is that it is consistent with the
dynamic one. We proved that the static semantics is sound and complete with
respect to the dynamic one. First, we showed that every possible step in the
dynamic semantics is covered by a corresponding step at the static semantics
level. For semCond the fact is expressed by a property of the following form:
2 The arithmetic module for the kind int was taken from the earlier work by David

Pichardie in Bicolano [18].
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public static int m() {
int i = 0;
int n = 50;
int r = 0;
while (i <= n) {
r = i + r;
i++;
r = i + r;
}
return r; }

(a)

Bytecodes 0-6

Bytecodes 7-8

Bytecode 9

Bytecodes 12-23

Bytecodes 26-27

(c)

public static int m();

0: iconst 0 // int i = 0;
1: istore 0
2: bipush 50 //int n = 50;
4: istore 1
5: iconst 0 //int r = 0;
6: istore 2
7: iload 0
8: iload 1
9: if icmpgt 26 // i > n

12: iload 0
13: iload 2
14: iadd // i + r
15: istore 2 // r = ...
16: iinc 0, 1 // i++
19: iload 0
20: iload 2
21: iadd // i + r
22: istore 2 // r = ...
23: goto 7 //end of loop
26: iload 2 // r is returned
27: ireturn

(b)

Fig. 3. An example of a method code and its bytecode. (a) The source code of
a method, (b) a bytecode listing of the method, and (c) the control flow graph
of the bytecode.

forall (op: TCondInstr) (ooff: option TOffset) vl1 vl2,
semCond op vl1 vl2 ooff →
staticSemCond op (kindOfValues vl1) (kindOfValues vl2) ooff.

Second, we demonstrated that every step in the static semantics is motivated
by a corresponding step in the dynamic one, which is expressed as the following
property:

forall (op: TCondInstr) (ooff: option TOffset) ks1 ks2,
staticSemCond op ks1 ks2 ooff →
exists vs1 vs2, kindOfValues vs1 = ks1 ∧ kindOfValues vs2 = ks2 ∧
semCond op vs1 vs2 ooff.

Currently, we provide and prove such properties for IFrame instructions.

2.4 Program Verification

A systematic process of JVML program verification can be performed in the
following way: one writes formulas that describe the states between every two
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Definition code: TCode := codeFromList
[(∗ 0∗) I_Frame (FI_Stackop (SI_Const KInt zero));
(∗ 1∗) I_Frame (FI_Store KInt var0);
(∗ 2∗) I_Frame (FI_Stackop (SI_Const KInt (VInt (Num.const n))));
(∗ 3∗) I_Frame (FI_Store KInt var1);
(∗ 4∗) I_Frame (FI_Stackop (SI_Const KInt zero));
(∗ 5∗) I_Frame (FI_Store KInt var2);
(∗ 6∗) I_Frame (FI_Load KInt var0); (∗ beginning of the loop ∗)
(∗ 7∗) I_Frame (FI_Load KInt var1);
(∗ 8∗) I_Frame (FI_Cond (CI_Cmp KInt ArithmeticOperators.CmpOp_ge

(offsetFromPosition 19%nat)));
(∗ 9∗) I_Frame (FI_Load KInt var0);
(∗10∗) I_Frame (FI_Load KInt var2);
(∗11∗) I_Frame (FI_Stackop (SI_Binop KInt ArithmeticOperators.BinOp_add));
(∗12∗) I_Frame (FI_Store KInt var2);
(∗13∗) I_Frame (FI_Inc var0 (Num.const 1));
(∗14∗) I_Frame (FI_Load KInt var0);
(∗15∗) I_Frame (FI_Load KInt var2);
(∗16∗) I_Frame (FI_Stackop (SI_Binop KInt ArithmeticOperators.BinOp_add));
(∗17∗) I_Frame (FI_Store KInt var2);
(∗18∗) I_Frame (FI_Cond (CI_Goto (offsetFromPosition 6%nat)));
(∗19∗) I_Frame (FI_Load KInt var2) (∗ after the loop ∗)
(∗20∗) I_Return (Some KInt) (∗ return ∗) ].

Fig. 4. The method code from Fig 3 translated to our formalisation

bytecode instructions and then proves that starting from a state satisfying the
formula before an instruction if the semantic step of the instruction is taken then
the resulting state satisfies the formula after the instruction.

Consider the small program given in Fig. 3. It consists of initial assignments
of constants to local variables and the loop that basically calculates the sum of
first n odd numbers, which happens to be equal to n2. Its CoJaq counterpart is
given in Fig. 4. First of all, note that labels in bytecode are positions in bytes,
whereas in the Coq counterpart they are consecutive numbers. Second, the CoJaq
code is parametrised by n, while in Java and JVML n is replaced by a concrete
constant 50. The proof of program correctness is of course done for arbitrary
(but small enough) n.

The proof process starts with proving a number of auxiliary lemmas about
properties of small int32 numbers. After that we define properties describing
the state before given instructions, e.g:

Definition s8_prop frame :=
pcToPosition (frameGetPC frame) = 8%nat
∧ exists i, exists r, stack_values frame [n; i]
∧ var_value frame var0 i ∧ var_value frame var1 n
∧ var_value frame var2 r ∧ r = i*i ∧ 0 <= i ∧ i <= n.
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The above definition says (i) that the program counter of the current frame is at
position 8, (ii) that the values on the operand stack correspond to the values of
appropriate local variables, and (iii) that the abstract loop invariant is satisfied,
i.e. r=i*i, where i is in the appropriate range.

Once the state properties are defined, we prove a number of lemmas about
transitions, e.g.

Lemma trans_7_8: forall frame frame’,
s7_prop frame → SF.stepFrame code frame frame’ → s8_prop frame’.

The proofs consist mostly in unfolding definitions, decomposing conjunctions
and inverting inductive relations. They can be automated to a large extent.

After proving transition lemmas, one can establish that reachable program
states are described by the aforementioned state properties. Hence, one can show
the partial correctness of the program, i.e, when it is started in the initial state
and arrives after instruction 19 then the operand stack holds n2:

Theorem partial_correctness: forall frameF,
pcToPosition (frameGetPC frameF) = 20%nat →
SF.stepsFrame code frame0 frameF → exists res,
frameGetLocalStack frameF = [(VInt res)] ∧ Num.toZ res = (n * n).

In this way we proved the desired functional property of the bytecode program
in Fig. 3.

2.5 Hoare Logic

The method of the partial correctness proof presented above can be generalised
in the Hoare logic style. This is done in ProgramAssertionsmodule. The module
is parametrised with a container of assertions associated with program points.
These assertions are properties of runtime structures or, in other words, proper-
ties of the state. The intent is that they define the set of states that are desired
to turn up before the instruction at the program point is executed.

This framework makes it possible to state in general terms when the partial
correctness property is valid. For the property to hold we assume that at each
program point the relation step links states that obey the assertion before and
after the instruction at the point. Under this condition, the execution of any
sequence of steps in the program also connects states that obey the assertions
at the beginning of the sequence and at its end.

This generalisation gives an automatic way to extend the correctness proofs
for particular instructions to the partial correctness of methods. Still, the most
laborious part of the work is to generate appropriate assertions for particular
instructions and prove them. This work cannot be encapsulated in a neat theo-
rem and must be done anyway. The only way to simplify the work is to devise
an appropriate verification condition generator and a series of Coq tactics that
automate the tedious handling of all details that are necessary for formal rea-
soning, but do not touch the essence of the correctness proof for a particular
code. The proof presented in Section 2.4 shows that most of the state properties
could be generated automatically by a suitable VC-gen.
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3 Missing Features in the Formalisation

The current version of CoJaq, as already mentioned, does not cover all the details
of the language. Within the limited resources in our reach we had to choose
the priorities for the formalisation of features. We worked with the following
assumptions:

– The support for formal verification of simple programs with arithmetic op-
erations and loops should be obtained quickly. As soon as this is achieved,
a development of the tools to support formal treatment of programs can be
started.

– Formalisation of instructions in different categories should be done to justify
and test decomposition of the formalisation into different modules.

– We expected that some details of the overall design were subject to change.
Therefore, we omitted formalisation of certain aspects of the language. There
were two major reasons for this. Some of the aspects such as multithreading
are very difficult to model so they need a well established basic structure
to undertake. To facilitate the possible changes we also kept the number of
actually formalised mnemonics small and avoided ones where similar func-
tionality was already realised elsewhere (e.g. exception handling is similar to
either jumps or returns, and 64-bit values are similar to 32-bit ones).

Here is the summary of the major omissions in our formal account of the JVML.

Advanced multithreading and Java memory model Full handling of multithread-
ing requires at least three major pieces of work to be accomplished (i) axioma-
tisation of the thread scheduler, (ii) axiomatisation of the Java memory model,
and (iii) support for native methods to make available functions such as thread
creation, wait, or signal. Currently we have partial implementation of (i) and
(ii). We use a simplified scheduler that non-deterministically chooses the thread
for the next instruction to be executed. We also introduced the possibility to
see the heap in a different way depending on the current thread and realised
two strategies of heap synchronisation, namely, (a) no synchronisation between
threads and (b) full synchronisation of the heap access.

Exceptions All the needed structure to implement the instructions is in place,
but the mnemonics have not been described yet.

Native methods The native methods are a mechanism that makes it possible
to extend ad hoc the JVML functionality in an arbitrary way. Therefore, native
calls require a mechanism to add an arbitrary step step jvm1 jvm2 relation
for a native method invocation. Currently, this can be added directly in the
Sem_Call module. However, this is not satisfactory solution since it breaks the
integrity of our formalisation.

Bytecode instructions not covered so far While the shape of instructions cate-
gorisation tree is broadly established and it shows a potential to cover the whole
JVML, the current version of the semantics does not handle all the instructions.
The instructions not described yet at the top level of the categorisation are
I_Throw and I_Monitor. At lower levels of the formalisation we miss also the
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formalisation of tableswitch and lookupswitch, jsr and ret, as well as arrays
support for heap and the support for 64-bit instructions.

Validation against existing implementations A formalisation of a programming
language requires a method to compare the formalisation with existing imple-
mentations. The current version of the platform does not have a direct method
to make such a comparison. However, we designed the formalisation with one
such method in mind so that it is possible to add such comparing infrastructure
in the future when appropriate resources will become available.

In our design, we assumed that the comparison will be done through testing.
A typical test will consist of checking if a small procedure returns a particu-
lar result given a particular input. In such case it is straightforward to gener-
ate precondition and postcondition that express such a relation. Moreover, one
can compute how many bytecode instructions were executed during such a run.
Based upon this number, n, we can automatically generate verification condi-
tions that suffice for verification of the code under the restriction that no jump
target is visited more than n times. Then the verification conditions should have
so simple structure to admit automatic generation of their proofs. It is important
to note that such proofs will have to use inversion to transform the condition
after the executed instruction to the one before. This way of handling is a result
of the design choice that program steps are formalised as inductive relations.

4 Related Work

A systematic reduction of a large set of JVML instructions to a small one by
means of abstraction was given by Yelland [25]. He proposed a language µJVM
with a modest set of instructions that transform program continuations. Next,
a translation was provided for the actual bytecode instructions. In fact, one
can view the work as a continuation style denotational semantics for the JVML
written in Haskell, which makes it immediately modular and executable. One
important advantage of the formalisation is that the Haskell type system corre-
sponds there to type correctness verification. In our approach we formalise the
language in small step fashion and the correctness proof for verification proce-
dure needs to be done separately. Moreover, µJVM works on a different level of
abstraction — instructions in CoJaq correspond in a hierarchical way to instruc-
tions in the JVML, while in the case of µJVM a translation is required.

Formal programming languages semantics on paper can be dated back at
least to the semantics of Pascal [12]. The semantics of Java and the JVML was
given in a notable book by Stark et al [24]. A number of formal accounts of the
JVML are available in the literature. Their extensive overview can be found in
the works of Hartel and Moreau [11] as well as Freund and Mitchell [10]. We
present here a brief overview of those realised in mechanised frameworks.

Mechanised formalisations of the JVML Probably the earliest effort to mechan-
ically formalise the JVML was done by Pusch [20]. She formalised the language in
Isabelle/HOL by direct representation of general instructions that group byte-
code operations. The language covered such aspects as low-level control flow,
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integer types, classes, methods, and arrays. She proved the correctness of the
JVML verifier. The formalisation largely corresponds to an earlier formalisation
on paper done by Qian [21], which was also formalised in Specware [5].

Bertot validated in Coq [3] the correctness of soundness proofs for the frag-
ment of the JVML concerned with object initialisation. This work was based
upon an early version of the work by Freund and Mitchell [9].

An important formalisation was proposed by Leroy [15]. This formalisation
is focused on JavaCard version of JVML and offers a Coq formal proof that the
JVML verifier is correct and that a preverified type information can serve to
guarantee type correctness after a type checking procedure is executed.

Klein and Nipkow [14] proposed probably the most extensive work concen-
trated on the JVML verification. They provided a model of Java called Jinja and
a formalisation of the JVM language model with 15 instructions that includes
such aspects of the JVML as low-level control flow, integer numeric operations,
classes, arrays, methods, exceptions, casts, and bytecode subroutines. They con-
structed a verified compiler of Jinja to their model of JVM as well as a JVML
verifier. All the verification of the procedures was done in the theorem prover
Isabelle/HOL. As a result they obtained a unified model for the source language,
the virtual machine, and the compiler.

A considerable fragment (over 70 instructions) of the whole instruction set
of the JVML was modelled by Pichardie [18] in Coq. The work was similar
in spirit to the one of Bertelsen [2] and modelled directly the instructions. The
semantics was done both in the small-step and big-step fashion and the two were
proved equivalent. This was probably the most ambitious and largely successful
attempt to make a formal account of the full bytecode instruction set. However,
the drawback of this approach was such that the number of instructions made
the formalisation unwieldy in the context of proving metatheorems for JVML
e.g. that a JVML verification algorithm is correct.

Another attempt to formalise JVML was done by Atkey [1] in Coq. The most
important feature of the attempt is that it uses the Coq program extraction to
make possible extraction of Ocaml programs that work as a JVM. In this way it is
possible to efficiently validate the operational semantics encoded in Coq against
real JVMs and test if the results obtained in the two environments agree.

A recent work of Demange et al [7] can also be viewed as a formalisation of the
JVML. The authors present a semantics of a chosen set of bytecode instructions
in Coq and a translation of bytecode to a stackless representation to make a
basis for formal analysis of bytecode compilation and its optimisation to native
code in JIT or standard compilers. Moreover, a semantics in Coq is given for the
target language. In this way they obtain two semantic accounts of the bytecode
and they prove that they are equivalent.

An interesting exercise in formal methods was proposed by Posegga and
Vogt [19]. They showed how model checking can be applied to verify functional
properties of a JVML program.

Formalisations of other low level languages A number of interesting formal-
isations of other low-level languages showed up in last years. Sarkar et al [23]
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proposed a formalisation in HOL of the x86 instruction set together with a mem-
ory model of causal consistency. The goal of the formalisation was to give deeper
intuition for low-level programming and sound foundation for further formal de-
velopments. Another interesting formalisation was given for ARM instruction
set by Fox and Myreen [8]. The main focus of the formalisation is to make a
platform to work on verification of programs in ARM assembly language. A dis-
tinguishing feature of the approach is that the platform contains a developed
tool set to test it against the existing hardware.

5 Conclusions

In thinking about programs, programmers tend to focus only on chosen aspects
of program execution. This often agrees with the assumption that the state of
certain runtime structures that govern JVM is irrelevant for the operation of the
particular instruction. We took this view and grouped the JVML instructions
based upon the way they operate on the runtime structures. In this way we
obtained a hierarchical decomposition of the Java instruction set and formalised
in Coq a considerable part of it. We believe that in this way it will be possible
to both prove metatheoretic properties of the JVML and prove correctness of
particular programs. In addition to the semantics of instructions we developed
a static type-based semantics to separate the reasoning concerning types from
the one concerning execution and a framework for proving partial correctness of
JVML programs. The whole development consist currently of over 7 KLOC of
Coq files.
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